
Server-Side Image Processing using the World

Wide Web

Daniel Tretter and Andrew Patti

Hewlett-Packard Laboratories

Palo Alto, CA 94304

IS&T’s PICS ConferenceIS&T’s 1998 PICS ConferenceIS&T’s 1998 PICS Conference Copyright 1998, IS&T
Abstract

In many image management and image processing sce-
narios, it is advantageous to have a central repository for
storing and processing the images, while users can inter-
act with the images from multiple remote locations. This
client-server architecture allows the system resources and
image data to be concentrated in a single location, which
simpli�es system maintenance and dissemination of the
data. In this paper, we describe a system in which a
web browser is used to access and manipulate image data
on a remote server. The images are stored in multiple
databases on the server. Clients can navigate and alter
these databases as well as select and process individual
images. Client interaction is managed through a Java ap-
plet, while CGI programs on the server perform the nec-
essary calculations and data manipulations. The client
and server communicate through CGI protocols and a
secondary socket connection. The architecture supports
multiple clients, with changes initiated by any individ-
ual client immediately propagating to all a�ected clients.
This paper will describe the system in detail and discuss
its advantages and disadvantages.

Introduction

In the past few years, the world wide web has gained
great popularity as a vehicle for distributing informa-
tion, including both text and images. As a result, client
browsers are widely available for most computing plat-
forms, and many computer users already have signi�cant
experience working with them. We would like to leverage
this existing codebase and the corresponding well-de�ned
communications protocols to construct a distributed im-
age processing system, where multiple clients interact
with images that are stored and manipulated on a server.
We limit ourselves to a system architecture that does not
require any special client software (other than a com-
mercially available web browser) or any speci�c client
platform. In this way the system is easily accessible and
more likely to attract users.
4242
Our system concentrates the processing on the server
rather than on the client platforms. This approach does
not require any assumptions about the processing capa-
bilities of the client machine, so the system will work for
so-called \thin clients", which have very little processing
power. Concentrating the processing on the server also
gives us full control over the processing software. Only
a single version of the code is in use, so it can be easily
updated or modi�ed without having to be redistributed
to all the users. This ensures that all clients are using
the same version of the code at all times since no code
is stored locally on the client.

Unfortunately, server-side processing also has several
drawbacks. Since the processing is concentrated on a
single machine, the system is not scalable. Even a very
powerful server can be overwhelmed if the number of
active clients grows too large. Also, for security and pri-
vacy reasons the server is not able to access a client's
�le system. If a client wants to process a local images
�le, that �le must �rst be uploaded to the server. The
server then processes the �le, and the output image is
downloaded by the client. The uploading and subse-
quent downloading can add signi�cant overhead to the
processing task, particularly if multiple images or large
images are being processed.

Distributed imaging systems using the world wide
web have been developed by several researchers. Meng,
Chang, and their associates at Columbia University have
developed a distributed system for searching and editing
video databases[3, 5]. Their system, like ours, uses Java
on the client side for maximum portability, but also re-
quires a Netscape plugin to be installed on the client.
Bamberger proposes a system for distance learning that
allows image processing to be speci�ed by a client via the
world wide web. His approach uses CGI scripts on the
server and HTML forms on the client side[1]. Berman et
al. propose a distributed system to allow clients to access
a database of X-ray images[2], and Hasegawa et al. de-
vise a multimedia database that allows users to request
image processing via the web and view the results[4].

We will next discuss the architecture of our system,
77



IS&T’s PICS ConferenceIS&T’s 1998 PICS ConferenceIS&T’s 1998 PICS Conference Copyright 1998, IS&T
Figure 1: CGI scripts on the server communicate with a
Java applet on each client. The data and processing re-
side on the server, while the user controls the processing
through the applet.

and then we go through a brief example interaction to
illustrate how the system operates. A more detailed de-
scription of our system can be found in [7].

Architecture

System Overview

Figure 1 illustrates our overall system architecture.
We use CGI (Common Gateway Interface) Perl scripts
on the server to perform the necessary server-side pro-
cessing. CGI allows the web server to communicate with
other programs on the server.

In typical CGI systems, a user enters information into
an HTML form and submits it to the server through a
web browser. The web server passes the form data on
to CGI programs on the server that process the data
and generate a result, often an HTML page, that gets
sent back to the client's web browser. Our system uses
a Java applet on the client in place of HTML forms to
handle user input and interpret server responses. Java
allows the user to view and interact with the images in
ways not possible through HTML. In addition, Java al-
lows the use of a secondary sockets connection, which al-
lows the server to initiate contact and update each client
when server status changes. This second connection will
typically fail if the client is connecting through a proxy,
so our system will usually not operate properly across a
�rewall.

Our system stores images in simple databases, which
we represent as �lmstrips, with each frame of the �lm-
strip a di�erent image. Images and databases are stored
and maintained on the server. Users can access and mod-
ify existing databases, create new databases, or process
individual images in a database. Images can be included
in multiple databases simultaneously, and databases can
contain any number of images. Users can only access
images through a database, so all images must be in at
4242
least one database. When a user creates a new image
either by processing an existing image or by uploading
an image from the client, the new image must be added
to a database immediately if it is to be kept on the server
for future user access.

Since we allow multiple simultaneous users, we en-
counter many of the same problems seen in any dis-
tributed database application. We need to track each
client's activity and current state, keep clients up to date
when other clients make database changes, and prevent
conicts from occurring when multiple clients access the
same database simultaneously. These tasks are the re-
sponsibility of the server, which handles all client inter-
actions and updates the clients using a second sockets
connection outside the CGI protocol. These issues are
covered in more detail below, where we discuss the server
responsibilities.

One issue we do not address in our system is the prob-
lem of security. The normal web protocols and Java pro-
vide some basic security (the Java applet cannot access
the client �lesystem, users cannot modify CGI scripts,
etc.), but a number of security problems still exist. From
an individual user's point of view, we would like to im-
plement protections to prevent other users from modi-
fying or even accessing user-created databases and im-
ages without permission. This would probably require
some sort of password protection for both individual im-
ages and entire databases, perhaps in conjunction with
Netscape cookies to allow automatic recognition of users.
Similarly, the server may want to maintain some read-
only databases, and each user should be limited to a pre-
de�ned amount of disk space on the server. Otherwise, a
user could upload many very large images and overload
the server. These issues, although not insurmountable,
have not been addressed in our existing system.

Server Side

Server-side responsibilities fall into three major cate-
gories, and the software code structure reects this divi-
sion. The three categories for which the server is respon-
sible are client handling, image and database handling,
and image processing. The server software de�nes sep-
arate Perl classes for clients, databases, and processing
algorithms. Each client or image database is a separate
instance of the corresponding class, while the processing
parameters and algorithm choice are carried out using
the processing class.

Client handling includes storing and tracking multi-
ple client states, communicating with the clients, and
preventing client collisions from occurring. When a new
client initiates a session, the server assigns a unique iden-
ti�er and communicates this number to the client. Each
subsequent request from the client will be prefaced by the
client with the identi�er, so the server can automatically
identify the request with the client. This identi�cation
mechanism is necessary because client requests use the
88



IS&T’s PICS ConferenceIS&T’s 1998 PICS ConferenceIS&T’s 1998 PICS Conference Copyright 1998, IS&T
Figure 2: The server communicates with each client
through both a CGI connection and a separate sock-
ets connection. The client identi�cation numbers are
used to associate CGI requests with clients, while the IP
addresses and port numbers are used by the server to
specify update targets.

CGI connection with the standard http protocol, which
is a stateless protocol. The server maintains no informa-
tion between transactions, so each request must stand
alone, and any tracking required of the server needs to
be implemented explicitly.

When the server generates an identi�cation number
for a new client, it also creates a state �le for that client.
In this �le the server stores information identifying the
database being used by the client, the current knowl-
edge of the client, and the last time this client contacted
the server. The active database and current knowledge
of the client are needed so the server knows when the
client needs to receive an update (client knowledge is
stale) and so the server can correctly interpret client re-
quests regarding individual database images (i.e. add
new image to the active database, etc.). The contact
time is used by the server to determine when a client is
no longer active. If no requests have been received for
a certain period of time, the client is declared inactive
and its identi�cation number is cleared for use by a new
client. This approach is similar to the one used in [2].

Figure 2 illustrates how the server identi�es and com-
municates with multiple clients. The unique client iden-
ti�cation number allows the server to keep track of each
client, but this mechanism only works if the client ini-
tiates the contact. Occasionally, the state of the server
itself will change. For instance, when a client modi�es
an image database, other clients need to be informed
of this change. The server cannot initiate a connection
through the standard web protocols (this sort of con-
nection requires what is referred to as a push channel).
We therefore open a separate sockets connection between
the server and the applet to allow this. Each client's
IP address is stored by the server, and the clients are
each assigned a port on which to \listen" for updates.
The port number must be assigned dynamically by the
server in case multiple clients share an IP address, as il-
lustrated in Figure 2. If too many clients share the same
IP address, the probability of a port conict may become
4242
unacceptably high.

Client collisions are prevented using a simple \�rst
come, �rst served" strategy. When a client is in the pro-
cess of modifying a database, the database is locked to
prevent other clients from accessing it. Other clients us-
ing that database are then updated through the sockets
connection and the database is unlocked for access. In
this way, only one client at a time can be modifying any
given database.

The server is also responsible for handling the images
and databases. Whenever a new image is generated or
acquired from a client, two scaled copies are automati-
cally generated and stored on the server. A thumbnail
version is used to represent the image in the database
�lmstrip, and a somewhat larger view image is displayed
by the applet when the user requests the image from the
database. The original image, which may be of higher
resolution than either of the others, is used for process-
ing and downloading to the client if desired. In addition
to the multiple image resolutions, the server also keeps
track of how many databases are using each image. If an
image is ever removed from the only database that cur-
rently includes it, it is automatically deleted from the
server since clients will no longer be able to access it.

Our system allows a user to specify a processing al-
gorithm to be performed on the chosen image. The pro-
cessing occurs on the server, which stores the output im-
age in a temporary location until the user decides what
to do with it. The user can choose to replace the origi-
nal image with the processed image, either in the active
database only or in all databases that contain the image.
The user can also choose to download the processed im-
age to the client, add it to the active database, delete it,
or process it further.

The processing module on the server has been de-
signed to allow new algorithms to be added easily with-
out signi�cantly changing the code. All processing al-
gorithms are assumed to take a single input image and
produce a single output image. The client is allowed to
specify a variety of processing parameters, including in-
teger, oating point, and binary parameters as well as
image regions.

Client Side

The client side is responsible for allowing the user to
interact with the database and providing a reasonable
means of specifying image processing operations that will
be carried out on the server. These tasks necessitate
a reasonably functional GUI to be implemented at the
client side. In addition, the client must be able to accept
updates regarding the server state that may occur at any
time. Lastly, the client must provide a mechanism for
uploading to the server images that reside on the client.
This task is especially challenging because Java does not
allow direct access to the client local storage.

The client architecture that provides required func-
99



IS&T’s PICS ConferenceIS&T’s 1998 PICS ConferenceIS& IS&T
Figure 3: Client Java applet classes (boxes) in relation to the server and HTML forms (ellipses).

T’s 1998 PICS Conference Copyright 1998, 
tionality is depicted in Figure 3. In the �gure, Java
classes are depicted by rectangular boxes, while non-Java
entities such as HTML forms and server CGI scripts are
depicted with ellipses. The client functionality is divided
into classes in the following manner. A local database is
maintained at the client via the \CGI Manage + Client
DBase" class. This class manages all CGI-based con-
nections to the server and can be thought of as a local
server, since the GUI classes act as clients that request
the local data.

The \Socket Manager" class maintains a thread which
monitors a TCP port for updates from the server. When
the server contacts the client to provide an update, this
class forwards the information to the \CGI Manage +
Client DBase" class in the form of a Java InputStream.
This enables the client-side data to be updated and main-
tained in a single place.

The \Server DBase GUI" class presents the user with
the capability to select an image strip for viewing, man-
age the strip display, initiate an image upload to the
strip, and select an image for viewing and manipulation
at full resolution. The image strip is composed of thumb-
nails loaded from the server into the client database. To
display the strip, a separate thread is managed that con-
tinuously scrolls the strip of images. The user is also
provided a scrollbar to directly control strip scrolling.
To allow client image upload, this class initiates a CGI
request to the server, but uses the Applet Context to
redirect the server response to an HTML form that re-
sides in a separate HTML frame on the page containing
the applet. Because the form does have access to the
local storage this Java-based system therefore allows for
client upload. One last note is that this class is the Java
Applet derived class that the browser launches.

The last client class, \Image Processing GUI", al-
lows for viewing and manipulation of the full sized im-
age. This class is launched by the \Server DBase GUI"
in response to a request to view an image in the strip, or
when the server has �nished applying an image process-
ing task and the image is to be presented to the user. The
4343
GUI allows the user to select a processing algorithm and
provide pixel-oriented input such as selecting speci�c re-
gions of the image to apply the processing to. The actual
request for processing on the server is directed through
the \CGI Manage + Client DBase" class. Upon comple-
tion of the processing, the client is alerted via the TCP
socket connection and a new viewer containing the pro-
cessed output image is launched by the \CGI Manage +
Client DBase" class.

Case Study

Now that we have described the architecture of our sys-
tem, we will go through an example interaction to illus-
trate its operation. Figure 4 illustrates a typical session.
We will follow this general outline in our case study.

Suppose a new client accesses the system by entering
the appropriate URL in a web browser. The browser en-
counters and downloads the Java applet automatically.
At this point, the browser has instantiated the \Server
DBase GUI" class. The applet begins to run on the client
machine, establishing a CGI-based connection with the
server. This is carried out by the \CGI Manage + Client
DBase" class. The server will generate a unique identi-
�cation number and a port number for this client. This
information, along with a list of image database choices
and an initial default database, will be sent back to the
client. The server also creates a state �le for this client,
storing the same information just sent to the client plus
a time stamp to indicate the last time of contact with
this client. Before generating an identi�cation number
for the client, the server checks the time stamps for all
existing clients and removes those clients that haven't
made contact recently enough.

The client receives the information from the server
through the CGI connection and stores it locally. The
applet opens a TCP socket connection on the speci�ed
port and starts up a thread to \listen" for server updates.
This is accomplished by instantiating the \Socket Man-
00



IS&T’s PICS ConferenceIS&T’s 1998 PICS ConferenceIS&T’s 1998 PICS Conference Copyright 1998, IS&T
Figure 4: This diagram indicates the communications for a typical client-server session. Note that the client sends
its identi�er with each request.
ager" class. It also gets the thumbnail images for the
initial database from the server and generates a screen
for the user showing the database selections and the ini-
tial database. Figure 5 shows a screen shot of what the
user sees at this point.

Suppose the user selects a di�erent database from the
list. The \Server DBase GUI" class passes this request to
the "CGI Manage + Client DBase" class, which contacts
the server and updates the local database. Upon receiv-
ing the request from the applet, the server responds with
a list of images contained in this database. The applet
then retrieves thumbnails of the indicated images from
the server and updates the user display. The server up-
dates its state �le for this client to reect the database
change.

Now suppose the user selects an image from the data-
base by clicking on one of the thumbnails in the �lmstrip.
The applet retrieves the higher resolution version of the
image from the server and launches the \Image Process-
ing GUI" to display it in a separate window. The user
might then elect to use the mouse to select an image
region for processing. Figure 6 shows a screen shot of
what the user might see at this point. In this example,
we are using a redeye reduction processing algorithm[6],
so we have selected an eye region. For some processing
algorithms, the user might select parameters other than
an image region. After selecting a processing algorithm
and parameter values, the user inputs a \process image"
command.

The processing request will be passed to the server
through the \CGI Manage + Client DBase" class, and
the request will include the input image name, the cho-
4343
sen algorithm, parameter values, and its client identi�er.
The server responds �rst by acknowledging the request.
The acknowledgement is sent back to the applet, freeing
it up so the user can continue to interact with the im-
age database while the server is performing the desired
processing. The server then forks o� a child process to
perform the requested image processing. After the pro-
cessing is completed and an output image is available,
the server sends the name of this processed image to the
applet through the secondary TCP socket. The applet
then retrieves this information via the \Socket Manager"
class, which ultimately causes the processed image to be
displayed via the \Image Processing GUI" class. The
display window then allows the user to specify further
actions on this image (ie. saving, further processing,
etc. ).

Conclusion

We have proposed and implemented an architecture for
performing image processing and archiving on the web.
The proposed system uses server-based processing, and
no special software needs to be installed on the client. By
using a combination of Java, CGI, and Perl programs,
users are allowed pixelwise interaction with the images,
and the server software can be easily upgraded without
requiring a change in client software. Future versions of
such a system would bene�t from the use of Flashpix
format images, which incorporate the desired multiple
resolutions. This would eliminate the need to generate
and store multiple versions of each image.
11



IS&T’s PICS ConferenceIS&T’s 1998 PICS ConferenceIS&T’s 1998 PICS Conference Copyright 1998, IS&T
Figure 5: The user initially sees a scrolling �lmstrip of
image thumbnails and a list of available databases.

References

[1] R. H. Bamberger. A prototype distance learning lab-
oratory for image processing education. In Proc. 26th
Annual Frontiers in Education (FIE) Conference I,
pages 51{54, November 1996.

[2] L. E. Berman, R. Long, and G. R. Thoma. Chal-
lenges in providing general access to digitized x-rays
over the internet. In Proceedings of the 23rd AIPR
Workshop, pages 183{193, Washington, D.C., Octo-
ber 1994.

[3] Shih-Fu Chang, John R. Smith, and Horace J. Meng.
Exploring image functionalities in www applications
{ development of image/video search and editing en-
gines. In Proc. IEEE International Conference on
Image Processing III, pages 1{4, Santa Barbara, CA,
October 1997.

[4] T. Hasegawa, T. Minamihaba, M. Daibo, T. Kuma-
gai, M. Fujisawa, and N. Tayama. Development of
interactive multimedia database. In Proc. SPIE {
volume 2915, pages 183{190, November 1996.

[5] H. J. Meng, D. Zhong, and S.-F. Chang. Webclip: A
www video editing/browsing system. In Proc. IEEE
4343
Figure 6: After selecting an image, the user can interact
with the chosen image, using the mouse, for example, to
select an image region.

1st Multimedia Signal Processing Workshop, Prince-
ton, NJ, June 1997.

[6] Andrew Patti, Konstantinos Konstantinides, Daniel
Tretter, and Qian Lin. Automatic digital redeye re-
duction. Technical Report HPL-97-74, HP Labora-
tories, June 1997.

[7] Daniel Tretter and Andrew Patti. A distributed im-
age processing system using the world wide web.
Technical report, HP Laboratories, 1998. in prepa-
ration.
22


